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Field Theory Investigation of High- Tc
Superconducting Coplanar Waveguide

Transmission Lines and Resonators
Jochen Kessler, Roland Dill, and Peter Russer, Senior Member, IEEE

Abstract —We investigate a coplanar waveguide structure
ing a partial wave synthesis. By this we take into account

us- conductor
the Y~

complex conductivity of the high- TC superconductor material
according to the two-fluid model and the London theory. Mi-
crometer transmission line dimensions are considered in the

frequency range up to 100 GHz suitable e.g. for low-loss, low-dis-

persion chip-to-chip interconnects. The results obtained for

superconductors are also compared with the results for normal

conductors with real conductivity and the same geometry. Fi-
nally we calculate the behavior of measured and published substrate

coplanar waveguide A/2 resonators made of high- TC supercon-
ducting thin films [11, [21. Fig. 1. Coplanar waveguide structure.

symmetric field components result from
I. INTRODUCTION

T HE coplanar transmission line shown in Fig. 1 will EX(– X:y:Z)=– EX(.X:y:Z) (la)

eventually be established in more and more applica-

tions of microwave integrated circuits. The advantage it EY(–x:y: z)= Ey(x:y:z) (lb)

confers of avoiding via holes makes it competitive with

the widely used microstrip elements [3]. In our considera- Ez(–x:y: z)= Ez(x:y:z) (lC)

tion of high-Tc superconductor applications, it is an im-

portant technological advantage that a ground layer met- Hx(–x:y: z)= Hx(x:y:z) (Id)

allization is not needed at the back side of the substrate

for this type of transmission line. Coplanar lines allow the Hy(–x:y: z)=– H,(x:y:z) ( le)

realization of small transverse line structures with a single

metallization layer and without thinning of the substrates. Hz(–x:y: z)=– H=(x:y: z). (If)

Fig. 2 shows the cross section of the waveguide, where

11. ANALYSIS OF COPLANAR WAVEGUIDE the considered right half is divided into five rectangular

For the analysis of the coplanar waveguide (Fig. 1) with

finite conductor thickness and complex conductivity, we

choose a partial wave synthesis [4], [5]. We consider the

structure of Fig. 1 to be embedded in a rectangular

hollow waveguide with walls of an ideal conductor. The

coplanar waveguide mode, which we are interested in, is

an even mode. We can introduce a magnetic wall in the

symmetry plane of the structure and therefore we only

have to consider one half of the structure. The even

regions (1 to 5) and three layers (I to III). Each of the

regions is assumed to be filled with homogeneous and

isotropic material. Since the electrical properties of the

superconductor are isotropic within the xz plane and the

tangential magnetic field components are dominant,

the superconducting regions are assumed to be isotropic
in our calculations. The material in each region is com-

monly described by e and p, where e results from the

relative dielectric constant, e,, and the complex conduc-

tivity, u, (as declared in Section III of this paper):
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Fig. 2. Cross section of the coplanar structure with regions and layers.

electric and magnetic longitudinal section waves in the x

direction (LSEX and LSHY), which result from a Hertz

vector consisting only of an x component. The Hehnholtz

equations for these waves are

AIIX + 02p~III = O

AfiX + 02pcfiX = O

Each field component results

LSEX waves and LSHX waves:

(LSEX waves) (3a)

(LSHX waves). (3b)

from a superposition of

HIx
EX=— + @zpErIx

dxz
(4a)

(?znx dfix
E,=—–” —

dxdy ‘@p Ci’z
(4b)

a2nx dllx
Ez=— + jtip —

ax dz L?y
(4C)

dzll
HX=— ‘ + flF/L6rIx

axz
(4d)

l?nx t?zfix
HY=jo~—+—

C?z axay
(4e)

dnx dzfix
HZ=–jtie-+G.

dy
(4f)

For a wave propagating in the + z direction, the Hertz

vectors of the LSEZ and LSHX waves are

IIX = ~ {(A~ej~X”x + B~e–j~..~)
m

.(C~ej~wY + ~ e-J~wY)}e~t@~-~zzJ (~a)
m

llz = ~ {( A-meJk””’ + time-jk’”x)
m

( )}. ~ eJ~ymY + Dme–J~YmY ~j(~f–k.~),
m (5b)

In the following, the factor ej(-t ‘k”), which is the same

for all elements of the series, is suppressed. From (4a)-(4f)

and (5) we obtain the following field components:

E. = ~ {(k2 – k~m)(Anejk*mx + ~me–Jk.mx)

.~~m~,kwy + ~ e-Jkwy)}
m (6a)

E,= ~ { – kxmk,m(AmeJk’~x – ~me-~k..’)
m

.(~meJkymy -D e-J~vmY)
m

(

.
— tipkz Ame J~.tnx + j e –Jk,mx

m ‘)

(
. Cmejkymy + ~me–J~vrnY

)}
(6b)

EZ = ~, {kXnkZ(A~eJk~”X – B~e-jk~mx)
m

.(CmeJk,mY + ~ e-~k,my)m

—
(-

co~kym A~e l~XnIX+ ~ e –]kx~x
m

‘)

(

. ~mejkymy – Dme–j$ymy

))
((5C)

HX = ~, {(k2 – k~n)(~~ejt’m-’ + fi~e-JL*”x)
m

(

. ~ ejft,mY + Dme-jkymy
m )}

(6d)

H, = ~, (oxkz(A~ejk’”X + Bme-fk’mx)
m

(Cmej~wy + D ~-k,tiy)
m

– kXnk ,n(A”~ej~’mX – ~~e ‘JiZ~’)

(
. ~~ej~,~y - fi~e -j~,~,

)}
(6e)

{
H,= ~, ~~kY~(Anejk’”-r + ~ne-jki~’)

V!

.(~~ejkwy -D ~-%o’)
m

J~xmX _ B e–j~xmx
+ kXnkz(A-~e ~

)

“( ))
~~ejLYmY + Dme–J~ymY . (6f)

For regions 1 and 5 (Fig. 2) we have three homogeneous

boundary corlditions for the tangential electric and mag-

netic fields:

HY(x=O)=O H=(x=O)=O (7a)

Ey(x=a)=O EZ(x=a)=O (7b)

EX(Y = yO) = O EZ(y=yO)=O ((7C)

where yO =s + h for region 1 and yO = – d for region 5.

Including thes~ boundary conditions in (6), we get the
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following simplification for the regions i = 1 and 5:

EiX = ~ {[– ALn(k~ – kfsx~)] sin[km~]

lin [ki,n( y – yO,)] } (8a)

E,Y = ~ ([ – ~zmk15xmkiym – LJW+Z]

.:os[k,5xmxl cm [k,,m(Y – Yoz)] } (8b)

.
E,z = ~ ([ jALnkls.nk. – jAt~Wtk,Y~ 1

m

cos[kl,x~x]sin[ ~i.v~(y - J’o1)]} (8c)
.

H,X = ~([A-l#~ – kf5X~)] cos[klsxn~]
m

“Cos [kym(Y – Yu 1} (8d)

HJY = ~ ([ – A,nOMlkz + A“,#15X~k1Ym]
m

.sin[k,5X~x]sin [k,y~(y - YO,)]) (8e)

Hi, = ~ ([j ALm~eikLY~ + jA-l~k15Z~kZ]
m

.sin[ki<jxm~]cos [k,ym(y - Yet)]} (8f)

where

k ,5xm=(m-o.5); (8g)

and

yol=s+h Y05 = – d. (8h)

The boundary condition of (7a) also concerns region 2, for

which we obtain

E2X = ~ {(k; -- k~Xm)jAzm sin [kzxmx]

;eJ~2ymY + B2me-JbmY]} (9a)

E, Y=~{-k ~X~kzY~Az~cos[kzX,tix]

.’;e,k,y~~ - Bz~e-.ikz,~J’ ] - ~pzk,~z~

.co~[~,,~x] [e,~zy.zy + ~,,~e-km, ]] (gb)

Ez. = ~ (k~xmkzA2mcos[k2xm x]

.;e,%ym, —B2#kZY~y] - Wp2k2y~~,~

Cos[k,z,nx] [d’zmy- B,me -JLZYWY]} (9c)

~2., = ~ ((k; -- %n)~-zrn cos[ iz.mx]
m

[

. ~Jk2y~.V + B2,ne–JL~~my 1} (9d)

H2Y = ~ {tiezkZjA2nsin [k2X~x]

. (eJ~,~-v+ B, e-J~ZrnJ’l
m

– izXnkzy~jX2m sin [ZzX~x]

[

.
. ej~,,.,y — B2~e ‘J&nY 1} (9e)

Hz, = ~ (o~2kzy~jAzn sin[kzX~x]

. [e,k,~~ - B ~ne -j~~,~y] + z2,,,~kZjti2~sin [~~,~X]

[
. elizv~y + Bzme 1}–i~2ymy , (9f)

For region 3, the boundary conditions of (7) are not

relevant. So we can eliminate only two coefficients from

the general equation (6) and then obtain

E3Z = ~ {(k; – k~X~)A3,,, [ e]ks’mx + B3ne-jk’’mx]

~ej~3,~3’ + ~,ne-j~l~y]} (lOa)

E3Y = ~ ( – k3xmk3YmA3m [e’k’tmx - B3me-ik3’mxl

.~ejks,~y - ~,me-kymy]

.
—

[~~3kzA3m e
J~3wtx + B3nLe –Jk3wnx

1

[
“e I~3vwtY ~ ~3,ne ‘lk3ymy 1} (lOb)

E3Z = ~ (k3X~k, A3~[eJk3Xmx – B3~e-Jk3’wK]

.~e,~,,~y + ~,ne-k,~y]

.
~/-L3k3y~A”3m[ e~is~mx+ ~3,,le-J~3xm’ 1

[
. e1~3,mY — ~3me –j~3YmY

1} (1OC)

[‘3x = ~ ((k: – ~~l~)A-3m eJi3imx + fi3me-J%P 1
m

“[
eJ~3YmY + ~3m e –j~3YmY

1) (lOd)

H3Y = ~ (o~3kZA3,.[eJk3’mx + B3me-jk3~mx]

.~e~~~ + ~, e-,k~y]
m

– k3xm ~3Y~A”3~ [ eJZ3’m’ – fi3ne ‘Ji3~m’]

[“

. e]kwny _ ~3me –I$3,m Y

1} (lOe)

H3Z = ~ (oe3k3ymA3~[eJk”~x i- B3~e-Jk3@]

;e],,~y – C3~ e -Jk3Y~Y1
+Jt~XnkZ A“3m[ e~~j.m’ – j3me –jk3.tmx 1

“[ 1)
ejizpd + ~3me–J~3Ym Y . (lOf)
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For the remaining region 4, we take into account the In order to fulfill (12) for each series element m and for

boundary condition of (’i’b) and obtain the following ap- LSEX waves and LSHX waves Vy = [0,s] separately, we
preach: define

Ed, = ~ {(k; – k~X~)Aq~cos [k4X~(x – a)] B Ilm := Bz~ = CB~ = B4~ (13il)

5 B2m = c3m = B4m (13t))
.~ejk~ -Jk’ymyl}

IIm ‘=
~Fny+ B4~ e (Ila)

k k“IIym ‘= 2ym = k~y~ = kb,~ (14a)

E4Y = ~ ( – k4X~kby~ jA1~ sin [kd,n(x – a)] ,.
k kIIyrn ‘= 2ym = k3ym = i4ym. (14t))

m

. [ejk4ymy - B4me-j~4ymy] In this way we get the same dependence in the y direc-

ti~~kzj~lmsin[~~~~(~ -a)]
tion for each series element of the regions in layer 11.

— From (9) to (14) we obtain the following conditions for a

“[ 1}
continual transition of the tangential field components at

eji4ymY + B4me –j~4ymy
(llb) the vertical boundaries in layer II:

m

. [e~~4Y~Y + B,me-jkomy]

—
- “ [- (x-a)]~p4k4ymjAdm sln kdxn

“[
.~j~b,d+ B4me +ymy

1} (lld) = %’14mcos [k4xm(w + ‘g - a)] (15d)

H4Y = ~ {~~4k=A4,. cos [k4Xn(.x – a)] for LSEY wave:s and

m

. [ejk’,~y
1

xE3A3m[eJkqxm(~+27) + B3me-Jk,xrn(~+g)]

+ B4me –jkomy

~ziz~cos[iz.mwl ‘~3X3m “’3’mw+g3~e-j’3xmw[ 1– k4xmk4ymX4m cos [k4xm( x - a)]

“[

(16a).
~J~4wnY — B4me –j%~y

1} (he)

jkz.mi,~sin[kz.~wl
= t?3xmA”3m [ elis.mw – ~3me -j~,.mw

1
H4Z = ~ (co~4kdy@q~cos [kd.m(~ – a)] (16b)

.,

‘“[ [I-+% e
Jk3Xm(Wtg) + ~3me “~3zfn(w+g)

eJkdymY — B4me –Jk4ytnY
1

1

“ [- (x-a)]+i4ymkzx44mCos k4xm = jw4~4msin [~4xm(w + g – a)] (16c)

“[ 1}
IteJ~4yWIY + B4me–Ji4smy . (llf) 3xm’

~qw, [ ej~3Aw +g) – B3me ‘J~3rm(w+g)

1

Now we have to match the tangential field components at = i,XnX4~cos[k4X~(w + g - a)] (16d)

the vertical boundaries in layer II between regions 2, 3,
for LSHX waves. The wavepumb~rs in the x direction,

and 4:
2X~, 3X~, kbX~ and ~2Xm, k3X~, kdX~, have to be det~tr-

Ezy(x = w) = E3Y(.x = w) (12a) ~in~dkby (15) and (16) so that they have a nontrivial

.E2Z(X = w) =E3Z(X=W) (12b)
solution with respect to the linear system with the un-

known coefficients A2n, A3~, AanB~~, A4~, and
HZ,(X = w) = H3Y(x = W) (12c) ~,m, ~,w, ~3m fi,m, ~4m. In addition the foll~wing rela-

H2Z(X = W) = ~3z(x = W) (U!cl) tiom between the wavenumbers kiXm and kiX~ in the

EaY(x=w+ g)= E4y(x=w+g) (12e)
different regions of layer II must be fulfilled:

k;X~ = k;X~ + kf – k2 i,j=2,3,4 (l’;’a)
EqZ(x=w +g)=E4z(x=w+g) (12f)

j?

H3y(x=w +g)=H4y(x=w+g) (12g) & = L;X~ + k;_ kz
J7

i,j=2,3,4 (l’;’b)

H3z(x=w +g)=H4z(x=w+ g). (12h) because (14) and

Vy=[o, s]. kf = ~2piei = kfX~ + k~y,~ + k;= t;X~ + ~fy~ + kz. (1.8)
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The remaining boundary conditions are the continuity of with the back-substitution:

the tangential field components at the boundaries be-

tween the layers (boundary 1/11: i = 1, y = s; boundary
A,m = – D;l(M1#13,n + M2Z13,nBrIm) (22a)

111/11: i =5, y = O): xl. = - D; ’( M7x3,n + M8X3JIIJ (22b)

E,X = EZX ~X G [O, w] ELX=E~XV.xe[w, w+g] ELX=EqXVxe[w+g, a] (19a)

E,z = Ez= Vx G [O, w] EiZ=E3z Vx=[w, w+g] EIZ=EdZV.x G[w+g, a] (19b)

HLK=H2XVX=[0, W] Hzy=H3,vxe[w,w+g] Hzx=H4%vx=[w+g,a] (19C)

Htz = H2Z Vx = [O, w] H,z=H3zvxc[w, w+g] H1z=H4, v.Xe[l’v+g, a] (19d)

For matching the tangential field components at the

horizontal boundaries y =s and y = O, we use the mo-

ment method. The test functions which are applied to the

orthogonal series of (8) to (11) are the functions of (8) at

Y = constant itself. Thus we get certain diagonal submatri-
ces in the resulting system of equations:

!)l o Ml

!)5 De M9

o 0 A413

o 0 M14

000

0 0 MIT

o

Mh

M,

M,.

o

M5

o

– M17

A lm

A“l~

A 3m

(20)

with- Dj denoting a diagonal submatrix and MJ a full

submatrix. The matrix of (20) can be reduced bv eliminat-

ing Aln, Aln, A5~, and A5~. Then we obtain the

following system of equations:

A B) (22C)‘– DZ1M13(A3n + A3,. um5m =

A-5,. = –
‘~lM16(X3~ + ‘3~ti’1~) “

(22d)

Before we can solve (21J, which is linear with respect to

the coefficients A~~, A3m, As,nBn~, and x43~~u~7 We

must determine k=, which is a nonlinear problem. A

proper starting value is the quasi-static approach for an

ideal conductor layer with zero thickness. After comput-

ing kZ by iteration, we obtain the unknown wavenumbers

in the y direction by (18) and then solve the linear system

of equations (21). After the back-substitution (22) we are

able to determine all field components in all regions with

the help of (8) to (11).

III. COMPLEX CONDUCTIVITY

We use the London theory to describe local relations

between the superconductive current and the correlated

electric and magnetic fields [6]. We start from the Maxwell

equations

rot fi = J=+ D (23a)

rot F= – S (23b)

div~=p (23c)

div~= O (23d). .
the material equations

5= creoE (24a)

z= pd (24b)

and the London eauations

(25a)

(25b)

=6 (21)
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where Al is the London penetration depth:

(m
VT> TC

h
A10

/il = VT< TC
4 (26)

1– ;
c

with TC the critical temperature of the superconductor

and Alo the London penetration depth at T = O.

Common characteristics of normal and superconduct-

ing current are as follows:

● The current is proportional to charge

velocity:

j-==p~e

● The charge driving force is proportional

tric field:

$= qz.

Different characteristics are as follows:

density and

(27)

to the elec-

(28)

● In the case of normal current the charge driving force

is used to compensate “friction losses” proportional

to velocity:

● In the case of superconducting current, however, the

driving force is used for charge acceleration:

(29b)

In the case of superconductivity we obtain from (23a),

with j?= j< + ]: and d/i?t = jti,

1
rot H+= UE+ + —~+ j~ereoi. (30)

normally jwpA~ dielectric
conducting super- part

conducting

We introduce a general complex conductivity, u,, so that

normal and superconducting current are comprehended

in one term:

I*=J; +Iz= C@ (31)

and obtain for the general conductivity, u,,

(32)

For superconductive materials in the analysis of Section

11 we have to replace the real conductivity, rr, in (2) with

the complex conductivity, m,, of (32).

IV. RESONATOR STRUCTURB

Fig. 3 shows the structure of the coplanar waveguide

short-circuit A/2 resonator capacitively coupled to the

lead conductor as measured and published in [1] and [2].

The unloaded Q values, QU, of the structure can be

obtained from the waveguide analysis assuming ideal short

1Y71

Fig. 3. Resonator structure,

e

-o
G

4
r-J

.%
c
3

i
L2

$J

L’

o
-lo -5 5 1

x [m] 0 * 10-6

y–position: lower boundary of layer I

Fig. 4. EY component without Hamming window.

circuits at both ends of the resonator:

Q.= 2:,..,,.,(l-e- )

1

(33)

where ares = – J%{kz,e,}, Are, = 2m/LZ?e{k=,e,} and kz,.,

is the wavenumber k= at resonance

a,e,A,~, <<1 one can approach (33) by

Qu. +

res

frequency. For

(34)

where ~Ie~ = ~?a{k= ,.,}.

V. RESULTS

For the presentation of field distrib~tions it is appropri-

ate to weight the coefficients A ,n, A ,~, lli~, and ~in in

(8) to (11) by using a window function, in order to elimi-

nate oscillations caused by breaking off the infinite series

at m = rno. A proper window function is the Hamming

window [7]:

where k, ~= is the kiX,,, with the largest account of the

real part, 1~e[kiX~}l.

Fig. 4 shows the distribution of the EY component upon

the conductor layer without the Hamming window, and

Fig. 5 shows the distribution with the window.
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“o
*

x [m] - * 1-0-6

y–position: lower boundory of layer I

Fig. 5. E} component with Hamming window.

Matching of the field component Hx
between layer I and layer II

150

%’100
>

z

: 50

m

6

Dispersion characteristics

“o
~ 7.70

7.65.
,.

:,.
,..

77.60. :’,

\

E
-7 55,
L

>=

7,50i I
20 40 60 80 100

f [GHZ] ‘-

Fig. 7. Phase velocity (superconducting case)

layer I

layer II

Fig. 6. Matching of the Hi component.

The following examples are according to a high-TC

coplanar transmission line (see Fig. 2) made by a

YBazCu30T_1 thin film [8] on a LaA103 substrate [9]:

width of conductor strip 2 w = 4 ~m

gap width g = 4 pm

total width 2a = 20 ~m

substrate thickness cl = 0.5 mm

superconductor thickness s = 250 nm

height of superstrata h = 0.5 mm

relative dielectric constants e,l,~ = 1, – o>E,2,4 —

er~ = 24

normal conductivities (77 K) ml ~ = O, mz ~ = 4.106

S/m, u,= 1.1.10-3 S/m ‘
London penetration depths (77 K) ~11,~~ ~, Alz,d =

240 nm, Al~ * CO.

Fig. 6 presents the matching of the H, component at

the boundary between layer I and layer 11 at 10 GHz. The

solid line describes layer I and the dashed line, layer II.

Fig. 7 shows the phase velocity UP~= ~/~ versus fre-

quency in the range from 10 to 100 GHz. No significant

variations occur in the observed frequency range. The

phase velocity varies only 0.2570 over the shown fre-

quency range.

Attenuation versus frequency

/
,.,

0
20 40 60 80 100

f [GHZ]

Fig. 8. Attenuation constant (superconducting case).

The attenuation constant a = – Xti{kZ} is shown in

Fig. 8. The attenuation consists of an attenuation caused

by dielectric losses in the LaA103 substrate with tan 8 =

8.3”10’5 at 10 GHz and an attenuation caused by

normally conducting electrons in the YBalCu307 .X su-

perconductor. At the given miniature geometry the con-

ductor losses predominate in spite of the use of supercon-

ductive material. The attenuation constant, a, increases

very strongly (a - ~ 2, in the shown frequency range.

Fig. 9 presents the horizontal distribution of the ~,

component at the upper boundary of superconductor

layer II. In the superconductor zones (regions 2 and 4)

this is equivalent to the horizontal distribution of the

longitudinal current, whereas in the gap zone (region 3) it

corresponds to the longitudinal electric field component,

E:. The shape of the shown distribution does not vary

over frequency.

The results for this high-TC superconducting coplanar

transmission line are now compared with a normally con-

ducting transmission line made with gold conductors with

the same geometry as above. The substrate material is

also LaA103. The material parameters for gold are

relative dielectric constant ●rz,~ = O;

normal conductivity (300 K) Uz ~ = 4.51.107 S/m;

London penetration depth Alz,~ + CO.
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‘0
*

8.

~6.
.&
c
3

+4.

o

X2.
z

o
-10 -5 0 s In

x [m] * 1-0-6 ‘-

Y–POSitiOn: lower boundary of layer I

Fig. 9. Horizontal distribution of HX component.

Dispersion characteristics

/

,, ... ,..

,. ..,,. ., .,.,

,,.,, .,

--
20

40 f [GHj~ ‘0

Fig. 10. Phase velocity (normal conducting case).

Fig. 10 shows the phase velocity, ZP~, versus frequency

in the frequency range from 10 to 100 GHz. In contrast to

the superconducting case, a significant variation can be

observed.

The attenuation constant, a, is shown in Fig. 11. The

attenuation consists of an attenuation caused by dielectric

losses in the LaA103 substrate and a strongly predomi-

nant attenuation caused by ohmic losses in the gold

conductors. The constant increases slightly in the fre-

quency range shown. This slight increase is caused mainly

by the change in the horizontal distribution of the longitu-

dinal current shown in Fig. 12. The horizontal current

displacement increases with frequency. The solid line

shows the distribution at 10 GHz, the line with long

dashes at 20 GHz, and the line with short dashes at

100 GHz.

Comparing the two geometrically identical transmission

lines, it can be said that the superconducting one is

dispersion free and, especially in the lower frequency

range, low in loss. At higher frequencies at about 100

GHz the low-loss advantage of the superconducting trans-

mission line decreases rapidly because of the strong in-

crease in the superconducting attenuation (see Fig. 8).

As already mentioned in Section IV, the coplanar

transmission line structure as shown in Fig. 1 was also

Attenuation versus frequency
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used for short-circuited A/2 resonators. For resonator 1

[1], a coplanar waveguide transmission line resoni~tor

based on a l’Ba ~Cu30T _X thin film of 350 nm thickness

on a MgO substrate, we calculate a QC value of 2350

according to a normal conductivity, u, of 2.9’106 S/m

and a London penetration depth, Al, of 300 nm at 7;7 K.

The MgO substrate with its relative dielectric constant,

e,, of 10 ancl its ohmic conductivity, m, of 8”10-4 Sl\m

causes a dielectric Q value, Q., of 6790, which leads to

an unloaded overall Q value, Q,,, of 1750. The measured

QU value is, by comparison, 1300. For resonator 2 [2], on a

LaA103 substrate with a relative dielectric constant of 24

and a conductivity, u, of 1.1” 10–3 S/m, which leads to

the better dielectric Q value, Qd, of 8120, we calculate a

conductive Q value, QC, of 9100 according to a normal

conductivity, o-, of 8.2”105 S/m and a London pentitra-

tion depth, Al, of 300 nm. The resulting overall Q value,
Q,,, is 4290, compared with a measured value of 3850+

180.

Table I presents data and results for both resom tors

[5]. The results show that, for the given geometry, the

substrate losses are in the range of the superconductor

losses that with resonator 2 they even become the limiting

effect.
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TABLE I

Width of conductor strip 2W
Gap width g

Superconductor thickness s
Substrate thickness d

Resonator length
Resonance frequency

u superconductor (at 77 K)
Al superconductor (at 77 K)

e, substrate
u substrate

QU measured
QU calculated
QC calculated

Q,i calculated

Resonator 1

100 ~m
50 ~m
350 nm
1 mm

7 mm

8.8 GHz

2.9.106 S/m
300 nm

10
8.10-4 S/m

1300
1750
2350
6790

Resonator 2

74 pm
46 ~m

280 nm
0.5 mm

7 mm
6.5 GHz

8.2105 S/m
300 nm

24
1.1.10-3 S/m

3850+ 180
4290
9100
8120

VI. CONCLUSION

We have investigated a coplanar transmission line

structure for use with superconductive material. A full-

wave analysis has been performed by a partial wave

synthesis. and the electromagnetic field has been evalu-

ated inside the superconducting regions as well. A minia-

turized transmission line geometry with conductor width

in the range of a few pm has been considered and

compared with the normally conducting case. Attenuation

and propagation behavior are shown in the frequency

range up to 100 GHz as well as some field distributions.

The superconducting transmission line has been proved

to be not only low in loss but also nearly dispersion free

up to 100 GHz. Finally the Q values of liigh-TC coplanar

waveguide resonators that have been produced are calcu-

lated and separated into Q values according to supercon-

ductor and substrate losses, QC and Qd, respectively. At

the given geometry in the range of a 100 ~m conductor

width the superconductor losses are so small that the

substrate losses may become the limiting effect,
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