1566 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 9, SEPTEMBER 1991

Field Theory Investigation of High-7,
Superconducting Coplanar Waveguide
Transmission Lines and Resonators

Jochen Kessler, Roland Dill, and Peter Russer, Senior Member, IEEE

Abstract —We investigate a coplanar waveguide structure us-
ing a partial wave synthesis. By this we take into account the
" complex conductivity of the high-7, superconductor material
according to the two-fluid model and the London theory. Mi-
crometer transmission line dimensions are considered in the
frequency range up to 100 GHz suitable e.g. for low-loss, low-dis-
persion chip-to-chip interconnects. The results obtained for
superconductors are also compared with the results for normal
conductors with real conductivity and the same geometry. Fi-
nally we calculate the behavior of measured and published
coplanar waveguide A /2 resonators made of high-7, supercon-
ducting thin films [11, [2].

I. INTRODUCTION

HE coplanar transmission line shown in Fig. 1 will

eventually be established in more and more applica-
tions of microwave integrated circuits, The advantage it
confers of avoiding via holes makes it competitive with
the widely used microstrip elements [3]. In our considera-
tion of high-7, superconductor applications, it is an im-
portant technological advantage that a ground layer met-
allization is not needed at the back side of the substrate
for this type of transmission line. Coplanar lines allow the
realization of small transverse line structures with a single
metallization layer and without thinning of the substrates.

II. ANALYSIS OF COPLANAR WAVEGUIDE

For the analysis of the coplanar waveguide (Fig. 1) with
finite conductor thickness and complex conductivity, we
choose a partial wave synthesis [4], [5]. We consider the
structure of Fig. 1 to be embedded in a rectangular
hollow waveguide with walls of an ideal conductor. The
coplanar waveguide mode, which we are interested in, is
an even mode. We can introduce a magnetic wall in the
symmetry plane of the structure and therefore we only
have to consider one half of the structure. The even
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Fig. 1. Coplanar waveguide structure.

symmetric field components result from

E(-xiy:z)=—E(x:y:2) (1a)
E(—x:y:z)=E,(x:y:z) (1b)
E(-x:yiz)=E(x:y:z) (1c)
H(-x1yiz)=H/(x:y:2) (1d)
H(—x:yiz)=—H,(x:y:z) (le)
H(-x:y:z)=—H.(x:y:2). (1f)

Fig. 2 shows the cross section of the waveguide, where
the considered right half is divided into five rectangular
regions (1 to 5) and three layers (I to III). Each of the
regions is assumed to be filled with homogeneous and
isotropic material. Since the electrical properties of the
superconductor are isotropic within the xz plane and the
tangential magnetic field components are dominant,
the superconducting regions are assumed to be isotropic
in our calculations. The material in each region is com-
monly described by € and w, where e results from the
relative dielectric constant, €,, and the complex conduc-
tivity, o, (as declared in Section III of this paper):

I
€=€0€r+'_—.

- )

The electric and magnetic fields in each region are,
without restriction of generality, described by the so-called
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Fig. 2. Cross section of the coplanar structure with regions and layers.

electric and magnetic longitudinal section waves in the x
direction (LSE, and LSH,), which result from a Hertz
vector consisting only of an x component. The Helmholtz
equations for these waves are

All, + w?uell =0  (LSE, waves) (3a)

AT, + 0’uell, =0  (LSH, waves).  (3b)
Each field component results from a superposition of

LSE, waves and LSH , waves:

2 LI
E = Py + w*pell, (4a)
. 9°11, o1l “
» T axay Moz (4)
911, i, A
= C
2 9xdz Jon dy (4)
91, -
H, = — + o’pell, (4d)
o ol 911, A
= +
y SIS, dxdy (42)
oI, 911,
H =-joe—+ . (41)
- dy Ixdz

For a wave propagating in the + z direction, the Hertz
vectors of the LSE, and LSH, waves are

I, = Y {(A,e"n* + B, e /kmx)
m
.(Cmejkymy + Dme_Jkymy)}e](wt—-k:z) (Sa)
=Y {(ffmeﬂ?xmx + B’me—jléxmx)
m
: (éme”;ymy + ﬁmeﬁi‘ymy)}ef(“’t—kzz). (5b)

In the following, the factor e“~*:® which is the same
for all elements of the series, is suppressed. From (4a)—(4f)
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and (5) we obtain the following field components:
E, = Y {(k*— k2,)( A ein® + B, e~
m
(€& + D, e )} (6a)
E-Y { — Ky (A et — B, e Thunt)
m
(Cpetom? — D, e~
— ok (A eFnm + B o)
-(C'meﬂ;ymy + ﬁme"’zvmy)> (6b)
E, = ¥ {kynkeo(Apetent — B, e kent)
m
(Cpe”m + D, e7%mY)
— wpkey A et + B e )
(Cpetomy ﬁme~f’€ymy)} (6c)
H = T{ (k2= k2,))(Apelbent + B, e hon)
m
(Gt + D’me—ﬂ?me)} (6d)
H, =}, {wek,(A,e*n" + B, e *m¥)
m
«(Ce™m¥ + D, e Fm?)
Ky A e?Een™ = B¢ 1R
(Cpetbom = Byeiiom)} (6¢)
H, = T {0ek,( A,/ en + B, )
”
(Cpe/om? = D, e~km?)
Ky, (A e/ — B e R )
(G + ﬁme—ﬂ?me)}. (6f)

For regions 1 and 5 (Fig. 2) we have three homogeneous
boundary conditions for the tangential electric and mag-
netic fields:

H(x=0)=0 H,(x=0)=0 (7a)
E(x=a)=0 E(x=a)=0 (7b)
E(y=y0)=0 E(y=y))=0 (7
where y,= s+ h for region 1 and y,= —d for region 5.

Including thes¢ boundary conditions in (6), we get the
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following simplification for the regions i =1 and 5:

Eix = Z {[ - 141111(kl2 - k125xm)] Sin[kISxmx]

m

8in [ k(¥ — yo,)]} (8a)
Ezy = Z <[ - AtmkISxmkiym - Almwlu‘lkz]
'COS[kISxmx]COS[kzym(y—yOz)]} (Sb)
ElZ = Z {[]Atmkﬁxmkz - ]ﬁimwﬂlkzym]
'Cos[klsxmx]sm[kiym(y - %z)]} (8¢c)
Hzx = Z {[/flm(kzz - k%Sxm)] Cos [kISxmx]
-cos[klym(y—in)]} (8d)
Hly = E <[ - Azmwezkz + "‘fzmkli\cmkzym]
.Sin[kISxmx]Sin[kzym(y_yOZ)]> (86)
Hiz = Z {‘[JAtmeiktym + j/fzmkISAmkz]
.Sin[kliixmx]cos[ktym(y_yOz)]} (Sf)
where
e
lexmz(m—O'S)z (88)
and
Yoo =S+h Yos = —d. (8h)

The boundary condition of (7a) also concerns region 2, for
which we obtain

E2x = Z {(k% - k%xm)jAZm Sin[k2xmx]

m

. [ejkzym.v + BZme_szvmy]}

E2y = Z { - k2xmk2ymA2m COs [k2xmx]

m

N pdk2ymy —jkaym¥ | i
[6 » BZme 2ym ] w/“LZszZm

(92)

-cos [Ig x] [eijymy + ézme*/kymy]}

2xm

(9b)

EZz = Z <k2xmsz2m COS[kZJcmx]
m

: [e]kamy - B2me_jk2ymy] - (")I'LZkamAZm
*COS [l%hmx] [eJ’Evay - B~2me‘/’€2ymy]} (9¢)
H2x = Z {(k% - ié%xm)/me cos [IEmex]
m

[ertom + B, emrkem]) (o)
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HZy = Z {wEZkz]Ahn sin [k2xmx]

m

. [eJkam-V + Bzme—lkzymy]
- k2xmk2ymj142m sin [kamx]

. l:ejIGZme — B’zme_]iéZymy]}

(%)

sz = Z {wEZkam]AZm Sin [kamx]

m

: [e]kamy - BZme ﬂ'k;vmy] + kamkz]AZm Sil’l [k2xmx]

(9f)

For regjon 3, the boundary conditions of (7) are not
relevant. So we can eliminate only two coefficients from
the general equation (6) and then obtain

Ey, = Y {(k2 = k2y) As €737 + By,e 7507

m

. [efksvmy + CSme_ij)'my] }

(10a)

E3y = Z { - k3xmk3ymA3m[e]k3‘mx - BSme—jksxmx]

m

. [efksm,y — C3me_1k3ym)’]
- wlu3sz3m|iejk3mLx + B3me_1k3tmx]

[+ b ()
E3z = Z {k3xmsz3m[ejk3xmx - B3mek]k3xmx]

m

. [ejk3vmy + C3me—lk3ymy]

Ry
3m€ = ]

- wﬂ3}23ym‘éf3m[eﬂ€3tmx +B

. [ eFsmy — G, e—j/;3y,,,y]} (10¢)
Hyo= T { (k3 = B30, Ay €75 + By 1R

m

[ ek 1 Gy, e R } (10d)
H, = ¥ {wesk, Ay, [0 + By, e ]
m
. [ejk3ymy + Csme_]kamy]

— k k ASm[eJk3xmx — B3me_]k3xmx]

3xm™3ym

[ ey - @meﬂfézvmy]} (10e)

H3z = Z {w63k3ymA3m[e]k3xmx + B3me~jk3,¢mX]

m

. [e]kSymy _ C3me*]k3ym}']

+ Ragke, Ay ebsms = By e~TRsuns]

3xm

. [eﬂzsym.v + Gyt | } (10f)
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For the remaining region 4, we take into account the
boundary condition of (7b) and obtain the following ap-
proach:

E4x = Z {(ki - k‘%xm)A4m cos [k4xm(x - Cl)]
m
. [ejk4y}ny + B4me‘1k4ym)’]}

E4y = Z { - k4xmk4ymjA4m sin [k4xm(x - a)]

m

(11a)

N pkaymy —jk4 Y]
[e ym¥ — B, e T Fam

- (‘)M4kzj‘4'4m sin []E4xm(x - tl)]

[e o + Byyeiom]) (11b)
B = ¥ { Ky il i [apn(x = )]

-Tefk4ymy + By, ko]

— gk gy A g S0 K g X — )]

[y = By,,e o]} (11c)

H4x = Z {(ki’ - ]ngm)jA4m sin []24xm(x - a)]
m
. [ejl%“ymy + Bi4me_jl€4ymy]}

H4y = Z {w64sz4m cos [k4xm(x - a)]

m

(11d)

. [eik4ymy + B4me—jk4ymy]
- k4xmlg4ymA4m Cos [Ig4xm(x - d)]

: [e1k4ymy - é4me_jk4ymy]}

H4z = Z {w€4k4ymA4m cos [k4xm(‘x - a)]

m

(11e)

. [ejk4ymy _ B4me~1k4ymy]
+ k4xmsz4m cos [k4xm(x - a)]

—Jiz4y,,,y] } )

Now we have to match the tangential field components at
the vertical boundaries in layer II between regions 2, 3,
and 4:

. [eﬂzwmy + B4me (11f)

E,(x=w)=E;(x=w) (12a)
Ey(x=w)=E;(x=w) (12b)
Hyy(x =w)=Hs,(x=w) (12c)
Hy (x=w)=Hy(x=w) (12d)
Ey(x=w+g)=E (x=w+g) (12¢)
E,(x=w+g)=E,(x=w+g) (12f)
Hy(x=w+g)=H,(x=w+g) (12¢g)
Hy,(x=w+g)=H, (x=w+g). (12h)

Vy €][0,s].
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In order to fulfill (12) for each series element m and for
LSE, waves and LSH, waves Vy €[0,s] separately, we
define

By =By, =Cs, = By, (13a)
By =By =Cs= By, (13b)
kIIym = Kym = Ksym = Kaym (14a)
Kiym: k2ym = ]23ym = ]24ym- (14b)

In this way we get the same dependence in the y direc-
tion for each series element of the regions in layer II.
From (9) to (14) we obtain the following conditions for a
continual transition of the tangential field components at
the vertical boundaries in layer II:

I _ Jk3emW —ik3emW
k2xmA2mCOS[Kmew]_k3xmA3m[e Bxm B3me Sxrm ]

(15a)
jes Ay, sin[k,,,w]= 63A3m[e]k3)cmw + Bgme_’k3xmw]
(15b)
k3xmA3m[ejk3XM(W+g) - B e—fk3xm(w+g)]
= k4xmA4m sin [k4xm(w + 8~ a)] (150)
63A3m[e1k3rm(w+g) + B3me—1k3xm(W+g)]
= €444 08 [Kypm(w + g —a)] (15d)

for LSE , waves and
x63A3m[e]k3xm(W+g) + B3me_]k3xm(w+g)]

ﬂZAZm cos [I’éz,rmw] = /‘L3A'3m[eﬂ;3tmw + BSmeiﬂzhmwl

(16a)
R 33 Ay SIR [IEmew] = 123xmA~3m[eﬂ?3xmw - I§3me—ﬂ€3xmw]
(16b)
I_L3A.v3m[e}1;3xm(w+g) + B’Sme_ﬂ—fg,‘m(w-l-g)]
=jM414~4mSin[];4xm(W+ 8—61)] (16¢c)
]g?’xmlgism[eﬂ;um(w +8) _ Bsme—jk3xm(W+g)]
= ié4xm/f4mcos[]€4xm(w+ g—d)] (1()(?1)

for LSH, waves. The wavenumbers in the x direction,
k2xm,k3xm,k4m and k2xm,k3xm,k4xm, have to be deter-
mined by (15) and (16) so that they have a nontrivial
solution with respect to the linear system with the un-
known coefficients  A,,, 43, Ay, By, As,, and
AZm,A3m,A B3m,A . In addition the following rela-
tions between the wavenumbers k., and k,, in the
different regions of layer II must be fulfilled:

kzzxm_kaxm—’—kiz* l;]=2,3,4 (17a)
k2, =k2,+kX—k?  i,j=2,3,4 (17b)
because (14) and
k2= o?ue;=k2, + k3, + k= k2, + k2, + k2. (18)
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The remaining boundary conditions are the continuity of with the back-substitution:

the tangential field components at the boundaries be-
tween the layers (boundary 1/II: i=1, y =s; boundary
/I i=35,y=0)

E,.=E, Yxe[0,w]
E.=E,,Vxe[0,w]
H,=H, Vxe[0,w]
H,=H, ¥x€[0,w]

For matching the tangential field components at the
horizontal boundaries y =5 and y =0, we use the mo-
ment method. The test functions which are applied to the
orthogonal series of (8) to (11) are the functions of (8) at
y = constant itself. Thus we get certain diagonal submatri-
ces in the resulting system of equations:

E, =E, VYxe[ww+g]
E,=E;,Yxe[w,w+g]
H_ =H, VYx[w,w+g]
H,=H,, Vxe[w,w+g]

Alm: _Dl_l(M1A3m+M2A3mBHm) (223)
Almz ~—1)4_1(]\47"4“3171+]‘4814~3n71f§r[m) (22’b)
E,=E, Vx&e[w+g,a] (19a)
E.,=E, Vxe[w+g,a] (19b)
H.,=H, Vxe[w+g,a] (19¢)
H,=H,, Vx&[w+g,a] (194d)
ASm =— D7_1M13(A3m + A3mBIIm) (220)
As, =~ Dl_olMlﬁ(/fsm + A3méllm)' (22d)

Before we can solve (21), which is linear with respect to
the coefficients A,,,, A, . A, By, and A, By, we
must determine k_, which is a nonlinear problem. A
proper starting value is the quasi-static approach for an

(Dl 0 M, 0 M, 0 0 0 ideal conductor layer with zero thickness. After comput-
D, D; M; M, M M 0 0 ing k, by iteration, we obtain the unknown wavenumbers
0 D, 0 M, 0 M, 0 0 in the y direction by (18) and then solve the linear system
of equations (21). After the back-substitution (22) we are
Ds Ds My, M, My M, 0 0 able to determine all field components in all regions with
0 0 Mz 0 M, 0 D, 0 the help of (8) to (11).
0 0 My, M; M, —M;s Dg Dy III. ComprLEX CONDUCTIVITY
0 0 0 M 0 M 0 Dy We use the London theory to describe local relations
0O 0 M, Mg -M; Mg D, Dy between the superconductive current and the correlated
- electric and magnetic fields [6]. We start from the Maxwell
[ 4, ] equations
Ay, rot H=j+D (23a)
A,, rot E=—B (23b)
A~ — i N =
) Zﬂ _ 3G (20) dlvli p (23¢)
“am divB=0 (23d)
Az, B the material equations
As,, D= ereoﬁ (24a)
| s B=uH (24b)
and the London equations
withr D, denoting a diagonal submatrix and M, a full ) =
submatrix. The matrix of (20) can be reduced by eliminat- pAyjs=E (25a)
ing Ay, Ay, As,, and f45'"' Then we obtain the rot ()@j‘g’) S— (25b)
following system of equations:
[ D2 D3 D2 D3 17T |
M;— M, M, — M, Ms——M, Mg — -~ My As,
D, D, D, D,
s Ds Dy -
M, D_lMl My, BZM7 My, + D1M2 M12+F4M8 Asyp, N
=0 (21)
Dy 9 Dy
M, B;MB M15 I_):;Mls M14 - D_7M13 M15 + I);Mls A3mBIIm
Dy Dy, Dy, 12 P
_M17 D—7 13 My 51-(; 16 M, + M, Mls_D—lOMls | hASmBIIm_
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where A, is the London penetration depth:
% VT >T.
/\10

with T, the critical temperature of the superconductor
and A, the London penetration depth at T = 0.

Common characteristics of normal and superconduct-
ing current are as follows:

VT <T,

A= (26)

* The current is proportional to charge density and

velocity:
j=pT. (27)
* The charge driving force is proportional to the elec-
tric field:
F=gE. (28)

Different characteristics are as follows;

* In the case of normal current the charge driving force
is used to compensate “friction losses” proportional
to velocity:

F~G=E~j =0oF. (29a)

¢ In the case of superconducting current, however, the

driving force is used for charge acceleration:
— . — AN 1 —

F~0=E~j =—E. (29b)

KA

In the case of superconductivity we obtain from (23a),

with j=j, +j, and 9 /9t = jw,

— —> — . =i
rotH= oFE + ——FE+joe k. (30)
normally Jop Ay dielectric
conducting super- part
conducting

We introduce a general complex conductivity, o,, so that
normal and superconducting current are comprchended
in one term:

J=intii=0E (31)
and obtain for the general conductivity, o,
1
=0 + . 32
Bt (32)

For superconductive materials in the analysis of Section
II we have to replace the real conductivity, o, in (2) with
the complex conductivity, o,, of (32).

IV. RESONATOR STRUCTURE

Fig. 3 shows the structure of the coplanar waveguide
short-circuit A /2 resonator capacitively coupled to the
lead conductor as measured and published in [1] and [2].
The unloaded Q values, Q,, of the structure can be
obtained from the waveguide analysis assuming ideal short
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Fig. 3. Resonator structure.

*1 010

ES

Ey [arb.units]

o

L
o
|

o] 5
x [m] *107®

y—position: lower boundary of layer |

Fig. 4. E, component without Hamming window.

circuits at both ends of the resonator:

2
Q.= (1= e 2ty (33)

where @, = — Imlk , o)y Apes = 2 / Relk ot and ko
is the wavenumber k, at resonance frequency. For

e es < 1 One can approach (33) by
BI‘ES
= 34
0,~1 (34)

res

where B, = Pelk, .o}

V. ReSULTS

For the presentation of field distributions it is appropri-
ate to weight the coefficients 4,,,, 4,,,, B;,,, and B, in
(8) to (11) by using a window function, in order to elimi-
nate oscillations caused by breaking off the infinite series
at m=m,. A proper window function is the Hamming
window [7]:

" %g{kixin}
A, B =105+0.5co0s A,B, (35)

Rk s}

where &, .. is the k;,,, with the largest account of the
real part, | Zelk;,,}

Fig. 4 shows the distribution of the E, component upon
the conductor layer without the Hamming window, and

Fig. 5 shows the distribution with the window.
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>
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Fig. 5. E, component with Hamming window.
Matching of the field component Hx
o between layer | and layer I
*1.0
—
2
S 5
o)
.
S
X
T .0

o 5
x [m] *107°

layer |

— — —~ layer |l

Fig. 6. Matching of the H, component.

The following examples are according to a high-7,
coplanar transmission line (see Fig. 2) made by a
YBa,Cu;0, _, thin film [8] on a LaAlO, substrate [9]:

width of conductor strip 2w =4 um

gap width g =4 um

total width 2a =20 um

substrate thickness d = 0.5 mm
superconductor thickness s = 250 nm
height of superstrate 4 = 0.5 mm

relative dielectric constants €, ; =1,
€,5=24

normal conductivities (77 K) oy =0, o, ,=4-10°
S/m, os=1.1-10"°S/m

London penetration depths (77 K) Ay 53—, Ay, =
240 nm, A5 —> .

€24 =0,

Fig. 6 presents the matching of the H, component at
the boundary between layer I and layer 11 at 10 GHz. The
solid line describes layer I and the dashed line, layer I1.

Fig. 7 shows the phase velocity Upp = @ /B versus fre-
quency in the range from 10 to 100 GHz. No significant
variations occur in the observed frequency range. The
phase velocity varies only 0.25% over the shown fre-
quency range.
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Dispersion characteristics

~
o
— 7.70
*
7.65 .
780 e — |
~
£
—'7 55
<
o
>
7.50
20 40 60 80 100
f [GHz]
Fig. 7. Phase velocity (superconducting case).
Attenuation versus frequency
150
—
£ 100
~
[o
=z
| —
9 50
o
e
0
20 40 60 80 100
f [GHz]
Fig. 8. Attenuation constant (superconducting case).
The attenuation constant a = — Fmik,} is shown in

Fig. 8. The attenuation consists of an attenuation caused
by dielectric losses in the LaAlO; substrate with tan § =
8.3:107° at 10 GHz and an attenuation caused by
normally conducting electrons in the YBa,Cu;0,_, su-
perconductor. At the given miniature geometry the con-
ductor losses predominate in spite of the use of supercon-
ductive material. The attenuation constant, @, increases
very strongly (a ~ £2) in the shown frequency range.

Fig. 9 presents the horizontal distribution of the H,
component at the upper boundary of superconductor
layer II. In the superconductor zones (regions 2 and 4)
this is equivalent to the horizontal distribution of the
longitudinal current, whereas in the gap zone (region 3) it
corresponds to the longitudinal electric field component,
E.. The shape of the shown distribution does not vary
over frequency.

The results for this high-7, superconducting coplanar
transmission line are now compared with a normally con-
ducting transmission line made with gold conductors with
the same geometry as above. The substrate material is
also LaAlO,. The material parameters for gold are

relative dielectric constant e,, , = 0;
normal conductivity (300 K) o, , = 4.51-107 S /m;
London penetration depth A, , — .
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~
o
*
8
a6
=
C
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o4
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[o]
—_
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T
)
-10 ot o] 5 10
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Fig. 9. Horizontal distribution of H, component.
Dispersion characteristics
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Fig. 10. Phase velocity (normal conducting case).

Fig. 10 shows the phase velocity, v, versus frequency
in the frequency range from 10 to 100 GHz. In contrast to
the superconducting case, a significant variation can be
observed.

The attenuation constant, «, is shown in Fig. 11. The
attenuation consists of an attenuation caused by dielectric
losses in the LaAlO; substrate and a strongly predomi-
nant attenuation caused by ohmic losses in the gold
conductors. The constant increases slightly in the fre-
quency range shown. This slight increase is caused mainly
by the change in the horizontal distribution of the longitu-
dinal current shown in Fig. 12. The horizontal current
displacement increases with frequency. The solid line
shows the distribution at 10 GHz, the line with long
dashes at 20 GHz, and the line with short dashes at
100 GHz.

Comparing the two geometrically identical transmission
lines, it can be said that the superconducting one is
dispersion free and, especially in the lower frequency
range, low in loss. At higher frequencies at about 100
GHz the low-loss advantage of the superconducting trans-
mission line decreases rapidly because of the strong in-
crease in the superconducting attenuation (see Fig. 8).

As already mentioned in Section IV, the coplanar
transmission line structure as shown in Fig. 1 was also
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Altenuation versus frequency
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current.

used for short-circuited A /2 resonators. For resonator 1
[1], a coplanar waveguide transmission line resonator
based on a YBa,Cu;0O,_, thin film of 350 nm thickness
on a MgO substrate, we calculate a Q, value of 2350
according to a normal conductivity, o, of 2.9:10° S /m
and a London penetration depth, A;, of 300 nm at 77 K.
The MgO substrate with its relative dielectric constant,
€,, of 10 and its ohmic conductivity, o, of 8-107* S/m
causes a dielectric Q value, Q,, of 6790, which leads to
an unloaded overall Q value, Q,, of 1750. The measured
Q, value is, by comparison, 1300. For resonator 2 [2], on a
LaAlQj, substrate with a relative dielectric constant of 24
and a conductivity, o, of 1.1-107° S/m, which leads to
the better dielectric Q value, Q,, of 8120, we calculate a
conductive @ value, Q,, of 9100 according to a normal
conductivity, or, of 8.2-10° S/m and a London penetra-
tion depth, A, of 300 nm. The resulting overall Q value,
Q,,, 1s 4290, compared with a measured value of 3850 +
180.

Table I presents data and results for both resonators
[5]. The results show that, for the given geometry, the
substrate losses are in the range of the superconductor
losses that with resonator 2 they even become the limiting
effect.
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TABLE 1

Resonator 1 Resonator 2
Width of conductor strip 2w 100 um 74 um
Gap width g 50 um 46 pm
Superconductor thickness s 350 nm 280 nm
Substrate thickness d 1 mm 0.5 mm
Resonator length 7 mm 7 mm
Resonance frequency 8.8 GHz 6.5 GHz
o superconductor (at 77 K) 2.9-10°S/m 8.2-10°S/m
A, superconductor (at 77 K) 300 nm 300 nm
€, substrate 10 24
o substrate 8-107*S/m  1.1-107%S/m
Q, measured 1300 3850+ 180
Q,, calculated 1750 4290
Q. calculated 2350 9100
Q, calculated 6790 8120

VI. CoNcLUSION

We have investigated a coplanar transmission line
structure for use with superconductive material. A full-
wave analysis has been performed by a partial wave
synthesis and the electromagnetic field has been evalu-
ated inside the superconducting regions as well. A minia-
turized transmission line geometry with conductor width
in the range of a few um has been considered and
compared with the normally conducting case. Attenuation
and propagation behavior are shown in the frequency
range up to 100 GHz as well as some field distributions.
The superconducting transmission line has been proved
to be not only low in loss but also nearly dispersion free
up to 100 GHz. Finally the Q values of high-7, coplanar
waveguide resonators that have been produced are calcu-
lated and separated into Q values according to supercon-
ductor and substrate losses, Q. and Q,, respectively. At
the given geometry in the range of a 100 um conductor
width the superconductor losses are so small that the
substrate losses may become the limiting effect,
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